Question (1) [35 points]

(a) Evaluate the integral $\quad \int_{0}^{1} \sqrt[4]{\frac{1}{x}-1} d x$.
(b) Find the series solution of $\left(x^{2}+1\right) y^{\prime \prime}-4 x y=0$ about $\mathrm{x}_{0}=0$.
(c) Find the Fourier integral representation of the function

$$
f(x)= \begin{cases}e^{-x}, & 0 \leq x \\ 0, & x<0\end{cases}
$$

Compute the values of that Fourier integral when substitute $x=1, x=0$, and $x=-1$.
(d) Based on the orthogonality of Legendre polynomials of first kind, deduce the value of A_{n} to expand a function $f(x)$ in the series form $f(x)=\sum_{n=1}^{\infty} A_{n} P_{n}(x)$.
(e) Evaluate $\frac{d}{d x}\left(J_{2}(x) J_{3}(x) J_{5}(x)\right)$ in a form that contains $J_{6}(x)$.
(f) The generating function of polynomials $L_{n}(x)$ is $\frac{1}{1-t} e^{\left(\frac{-x t}{1-t}\right)}=\sum_{n=0}^{\infty} t^{n} L_{n}(x)$. Show that $L_{n}(0)=1$ for all n.

Question (2) يسمح بالإجابة باللغة العربية عند الحاجة للشرح [20 points]
(a) What is the basic principle of the method of separation of variables for solving PDEs?
[3 points]
(b) Deduce the wave equation modeling the vibration of finite string with fixed ends. Write the physical assumptions of the model.
(c) Explain how the solution of the standard heat equation by separation of variables differs for the case of finite rod from the case of semi-infinte rod.
[5 points]
(d) Which of the Fourier representations is suitable for $f(x)=\tan (x)$: Fourier trigonometric series, Fourier half-range expansion, or Fourier integral? Why? [5 points]
3. (a) $[10 \mathrm{pts}]$ Discuss the mapping $w=e^{z}$.
(b) [10 pts] Expand the function $f(z)=\frac{z^{2}-2 z+5}{(z-2)\left(z^{2}+1\right)}$ in the ring $1<|z|<2$.
(c) $[10 \mathrm{pts}]$. Find all roots of $\sqrt{\cos \theta-i \sin \theta}$. Determine the values of θ for which these roots are
i. pure real,
ii. pure imaginary.
4. (a) $[10 \mathrm{pts}]$ Evaluate the integral $\int_{C} \frac{z}{\bar{z}} d z$, where c is the boundary of the half ring $1 \leq|z| \leq 2, \operatorname{Im} z \geq 0$.
(b) [10 pts] Show that u is harmonic, find a harmonic conjugate v and express $f=u+i v$ as a function of z if $u=-\frac{y}{x^{2}+y^{2}}$.
(c) $[10 \mathrm{pts}]$ Use the residue theorem to evaluate $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}\left(x^{2}+b^{2}\right)}$, $a>0, b>0$.
I. A. El-Awadi

